

Electrochemical methods of analysis

Definition

Electroanalytical methods – are analytical techniques that use measurement of potential, charge or current to determine an analyte's concentration or to characterize an analyte's chemical reactivity

Electrochemical methods Homework task How many moles of Sn⁴⁺ are reduced to Sn²⁺ by 1.00 C of electric charge?

Electric current

Electric current – flow of electric charge (electrons, protons or ions)

Current is the **quantity of charge** flowing each second through a circuit

Current of 1 ampere (A) represents a charge of 1 coulomb (C) per second (s) flowing past a point in a circuit (1A = 1C/s)

HW: Understand the example on Page 281 (Harris book)

Potential difference

The work needed (or that can be done) when moving an electric charge from one point to the other

The greater the potential difference between two points, the stronger will be the "push" on a charged particle traveling between those points

Standard potential

Potential measured at standard conditions (Activity = 1; Pressure = 100 kPa, Temperature = 298K) versus hydrogen electrode

	Oxidizing agent Reducing agent		<i>E</i> °(V)
↑	$F_2(g) + 2e^- \rightleftharpoons 2F^-$	SS	2.890
S	$O_3(g) + 2H^+ + 2e^- \rightleftharpoons O_2(g) + H_2O$:	Icreas	2.075
	$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O_2$	wer ir	1.507
	$Ag^+ + e^- \rightleftharpoons Ag(s)$	ng po	0.799
crease	$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$	Reduci	0.339
ing power in	$2\mathrm{H}^+ + 2\mathrm{e}^- \rightleftharpoons \mathrm{H}_2(g)$	Ī	0.000
	$\operatorname{Cd}^{2^+} + 2e^- \rightleftharpoons \operatorname{Cd}(s)$		-0.402
idiz	$K^+ + e^- \rightleftharpoons K(s)$		-2.936
OX	$Li^+ + e^- \rightleftharpoons Li(s)$	₩	-3.040

Nernst equation

 $aA + ne \rightarrow bB$

$$E = E^{0} - \frac{RT}{nF} \ln \frac{A_{B}^{b}}{A_{A}^{a}} = E^{0} - \frac{0.05916V}{n} \ln \frac{A_{B}^{b}}{A_{A}^{a}}$$

 E^0 – standard reducing potential ($A_A = A_B = 1$);

R – gas constant (8.314 J/(mol · K));

T – temperature, K;

n – number of electrons in half-reaction;

- F Faraday constant (9.649 x 10⁴ C/mol)
- A_i activity of species i

Eectrodes

Indicator (working) - electrode sensitive to analyte's concentration

Reference – electrode that maintains a fixed (reference) potential and completes the circuit

Electroanalytical methods

Application of potentiometry

Ion selective electrodes

Potentiometric sensors

Potentiometric titration

Electrochemical methods pH measurement (+) Leads to pH meter Air inlet Liquid level of outer reference electrode Liquid level of inner reference Glass combination electrode electrode with a silver-silver chloride reference electrode Aqueous filling solution Ag wire saturated with AgCI and KCI AgCl paste suspended between two sides of folded Ag wire Solution level of analyte in beaker Porous plug to allow slow drainage of AgCl(s) + KCl(s)electrolyte out of electrode Glass membrane -0.1 M HCI saturated with AgCl

Wet Chemistry laboratory working on Mars

Problem with Nitrate ion-selective electrode

BOX 14-3 How Was Perchlorate Discovered on Mars?²⁹

Nobody expected perchlorate (ClO_4^-) to be abundant on Mars, so the *Phoenix Mars Lander* Wet Chemistry Laboratory was not designed to look for ClO_4^- . However, the nitrate ion-selective electrode sent to Mars was 1 000 times *more sensitive* to ClO_4^- than to NO_3^- . That is, $K_{NO_3,ClO_4^-}^{Pot} = 10^3$. Liquid used to leach ions from the soil had a constant NO_3^- background near 1 mM. Nitrate would only be detected if it were present at concentrations above 1 mM.

When salts were leached from soil in the Wet Chemistry Laboratory, the NO_3^- electrode potential changed by 200 mV,

corresponding to an apparent NO_3^- concentration above 1 M, which would have required more NO_3^- than the mass of soil that was analyzed. However, 4–6 mg of ClO_4^- in 1 g of soil would have produced the observed response. Heating the soil released a product at 400°–600°C with a molecular mass of 32 (likely O₂), consistent with thermal decomposition of ClO_4^- . Perchlorate occurs at similar levels on Earth in arid regions including the Atacama Desert. On Earth, ClO_4^- is thought to arise from photochemical reactions of ozone (O₃) with chlorine species in the atmosphere.

Amperometry

A method based on measurement of oxidation/reduction current at constant electrochemical potential

Amperometry is most often used in the construction of **chemical sensors** that are used for the quantitative analysis of single analytes.

One important example, for instance, is the Clark O_2 electrode, which responds to the concentration of dissolved O_2 in solutions such as blood and water.

Amperometric detection inLC

(1) fucose, (2) methylglucose, (3) arabinose, (4) glucose, (5) fructose, (6) lactose, (7) sucrose, and (8)cellobiose

Carl Fischer titration

Measures traces of **water** in transformer oil, solvents, foods, polymers, and other substances, is performed half a million times each day

 $H_2O + I_2 + ROSO_2^- + 2B \rightarrow ROSO_3^- + 2BH^+I^-$

R – alkyl radical (CH₃); B – base (imidazole, diethanolamine)

Method sensitivity - 1 ppm

Five important concepts

The electrode's **potential** determines the analyte's **form** at the electrode's surface

The concentration of analyte at the electrode's surface may not be the same as its concentration in bulk solution

In addition to oxidation-reduction reaction, the analyte may participate in other reactions

Current is a measure of the **rate** of the analyte's oxidation or reduction

We can not simultaneously control current and potential

* Faulkner, 1983